

# Multi-Task Learning: Theory, Algorithms, and Applications

Jiayu Zhou<sup>1,2</sup>, Jianhui Chen<sup>3</sup>, Jieping Ye<sup>1,2</sup> <sup>1</sup>Computer Science and Engineering, Arizona State University, AZ <sup>2</sup>The Biodesign Institute, Arizona State University, AZ <sup>3</sup>GE Global Research, NY



The Twelfth SIAM Information Conference on Data Mining, April 27, 2012



## **Tutorial Goals**

- Understand the basic concepts in multi-task learning
- Understand different approaches to model task relatedness
- Get familiar with different types of multi-task learning techniques
- Introduce multi-task learning applications
- Introduce the multi-task learning package: MALSAR



# **Tutorial Road Map**

- Part I: Multi-task Learning (MTL) background and motivations
- Part II: MTL formulations
- Part III: Case study of real-world applications
  - Incomplete Multi-Source Fusion
  - Drosophila Gene Expression Image Analysis
- Part IV: An MTL Package (MALSAR)
- Current and future directions



## **Tutorial Road Map**

- Part I: Multi-task Learning (MTL) background and motivations
- Part II: MTL formulations
- Part III: Case study of real-world applications
  - Incomplete Multi-Source Fusion
  - Drosophila Gene Expression Image Analysis
- Part IV: An MTL Package (MALSAR)
- Current and future directions

#### ARIZONA STATE UNIVERSITY

## **Multiple Tasks**

• Examination Scores Prediction<sup>1</sup> (Argyriou *et. al.*'08)

School 1 - Alverno High School





School 138 - Jefferson Intermediate School





#### School 139 - Rosemead High School



<sup>1</sup>The Inner London Education Authority (ILEA)

-



## **Learning Multiple Tasks**

#### • Learning each task independently

| School 1 -    | Alverno H     | igh School        |                   |                       |               |             |           |
|---------------|---------------|-------------------|-------------------|-----------------------|---------------|-------------|-----------|
| Student<br>id | Birth<br>year | Previous<br>score | School<br>ranking | <br>$\longrightarrow$ | Exam<br>Score | task<br>1st |           |
| 72981         | 1985          | 95                | 83%               |                       | ?             |             |           |
|               |               |                   |                   |                       |               |             | Excellent |



| School 139    | - Rosem       | ead High Sch      | nool              |                   |               |               |           |
|---------------|---------------|-------------------|-------------------|-------------------|---------------|---------------|-----------|
| Student<br>id | Birth<br>year | Previous<br>score | School<br>ranking | <br>$\rightarrow$ | Exam<br>Score | task<br>139th | 1 Sol     |
| 12381         | 1986          | 83                | 77%               |                   | ?             |               |           |
|               |               |                   |                   |                   |               | /             | Excellent |



## Learning Multiple Tasks

#### • Leaning multiple tasks simultaneously











## **Performance of MTL**

- Evaluation on the *School* data:
  - Predict exam scores for 15362 students from 139 schools
  - Describe each student by 27 attributes
  - Compare single task learning approaches (Ridge Regression, Lasso) and one multi-task learning approach (trace-norm regularized learning)



The Twelfth SIAM Information Conference on Data Mining, April 27, 2012



# **Multi-Task Learning**

- Multi-task Learning is different from single task learning in the training (induction) process.
- Inductions of multiple tasks are performed simultaneously to capture intrinsic relatedness.





## **Learning Methods**



- o Multi-task Learning
  - Model the task relatedness
  - Learn all tasks simultaneously
  - Tasks may have different data/features
- o Multi-label Learning
  - Model the label relatedness
  - Learn all labels simultaneously
  - Labels share the same data/features
- Multi-class Learning
  - Learn the classes independently
  - All classes are exclusive



11

## Web Pages Categorization

Chen et. al. 2009 ICML

- Classify documents into categories
- The classification of each category is a task
- The tasks of predicting different categories may be latently related



| Home U.S.                                    | World        | Politics      | Business                          | Sports                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Entertainment | Health                                 | Tech & science   | Travel   | Local       | Weather         |  |
|----------------------------------------------|--------------|---------------|-----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------|------------------|----------|-------------|-----------------|--|
| Gadhafi vows 'lo                             | ng war' aft  | er US, allies | strike                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Video         |                                        | Africa           |          | World Blog  |                 |  |
| Joy in rebel stronghold after Western attack |              |               |                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | indicat       | Pentagon: 'No<br>indications of        | Americas         | Americas |             | Behind the Wall |  |
| Japan reports pro                            | ogress at le | eaking nucle  | ear complex                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | civiliar      | a casualties'                          | Europe           |          | Wonderful V | Norld           |  |
| Mullen: Chance (                             | Gadhafi co   | uld cling to  | power                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Slides        |                                        | Mideast & N. Afr | ica      | Weather     |                 |  |
| Egypt: Voters OK constitution changes        |              |               |                                   | The second |               | The Week in<br>Pictures                | Asia-Pacific     |          | PhotoBlog   |                 |  |
| Woman, grandso                               | on found ur  | nder rubble i | in Japan                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |               | 11111111111111111111111111111111111111 | South & Central  | Asia     | The Windso  | or Knot         |  |
| Ma msn                                       | bcc          | om            | as of 2:21 p.m.<br>March 20. 2011 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Tempe, I      | NZ<br>2°F (Change)                     | Search msr       | he he    | bin         | C Search        |  |

The Twelfth SIAM Information Conference on Data Mining, April 27, 2012



## **MTL for HIV Therapy Screening**

Bickel *et. al.* ICML 08

- Hundreds of possible combinations of drugs, some of which use similar biochemical mechanisms
- The samples available for each combination are limited.
- For a patient, the prediction of using one combination is a task
- Use the similarity information by multiple task learning







## **Other Applications**

- Portfolio selection [Ghosn and Bengio, NIPS'97]
- Collaborative ordinal regression [Yu et. al. NIPS'06]
- Web image and video search [Wang *et. al.* CVPR'09]
- Disease progression modeling [Zhou *et. al.* KDD'11]
- Disease prediction [Zhang *et. al.* NeuroImage 12]



# **Tutorial Road Map**

- Part I: Multi-task Learning (MTL) background and motivations
- Part II: MTL formulations
- Part III: Case study of real-world applications
  - Incomplete Multi-Source Fusion
  - Drosophila Gene Expression Image Analysis
- Part IV: An MTL Package (MALSAR)
- Current and future directions



#### **How Tasks Are Related**



Assumption: All tasks are related

#### Methods

- Mean-regularized MTL
- Joint feature learning
- Trace-Norm regularized MTL
- Alternating structural optimization (ASO)
- Shared Parameter Gaussian Process



#### **How Tasks Are Related**



Assumption: There are outlier tasks

- Assume all tasks are related may be too strong for practical applications.
- There are some irrelevant (outlier) tasks.



#### **How Tasks Are Related**



#### **Methods**

- Clustered MTL
- Tree MTL
- Network MTL





## **Multi-Task Learning Methods**

- Regularization-based MTL
  - All tasks are related
    - regularized MTL, joint feature learning, low rank MTL, ASO
  - Learning with outlier tasks: robust MTL
  - Tasks form groups/graphs/trees
    - clustered MTL, network MTL, tree MTL
- Other Methods
  - Shared Hidden Nodes in Neural Network
  - Shared Parameter Gaussian Process



## **Regularization-based Multi-Task Learning**

- All tasks are related
  - Mean-Regularized MTL
  - MTL in high dimensional feature space
    - Embedded Feature Selection
    - Low-Rank Subspace Learning
- Clustered MTL
- MTL with Tree/Graph structure



#### Notation



• We focus on linear models:  $Y_i = X_i \times W_i$  $X_i \in \mathbb{R}^{n_i \times d}, Y_i \in \mathbb{R}^{n_i \times 1}, W = [W_1, W_2, ..., W_m]$ 



#### **Mean-Regularized Multi-Task Learning**

Evgeniou & Pontil, 2004 KDD

- Assumption: task parameter vectors of all tasks are close to each other.
  - Advantage: simple, intuitive, easy to implement
  - Disadvantage: may not hold in real applications.

#### Regularization

penalizes the deviation of each task from the mean

$$\min_{W} \frac{1}{2} \|XW - Y\|_{F}^{2} + \lambda \sum_{i=1}^{m} \left\| W_{i} - \frac{1}{m} \sum_{s=1}^{m} W_{s} \right\|_{2}^{2}$$





## **Regularization-based Multi-Task Learning**

- All tasks are related
  - Mean-Regularized MTL
  - MTL in high dimensional feature space
    - Embedded Feature Selection
    - Low-Rank Subspace Learning
- Clustered MTL
- MTL with Tree/Graph structure



#### **Multi-Task Learning with High Dimensional Data**

- In practical applications, we may deal with high dimensional data.
  - Gene expression data, biomedical image data
- Curse of Dimensionality
- Dealing with high dimensional data in multi-task learning
  - Embedded feature selection:  $L_1/L_q$  Group Lasso
  - Low-rank subspace learning: low-rank assumption ASO, Trace-norm regularization



## **Regularization-based Multi-Task Learning**

- All tasks are related
  - Mean-Regularized MTL
  - MTL in high dimensional feature space
    - Embedded Feature Selection
    - Low-Rank Subspace Learning
- Clustered MTL
- MTL with Tree/Graph structure



# Multi-Task Learning with Joint Feature Learning

- One way to capture the task relatedness from multiple related tasks is to constrain all models to share a common set of features.
- For example, in school data, the scores from different schools may be determined by a similar set of features.





#### **Multi-Task Learning with Joint Feature Learning**

Obozinski et. al. 2009 Stat Comput, Liu et. al. 2010 Technical Report

- Using group sparsity:  $\ell_1/\ell_q$ -norm regularization
- When q>1 we have group sparsity.



$$\min_{W} \frac{1}{2} \|XW - Y\|_{F}^{2} + \lambda \|W\|_{1,q}$$



#### **Writer-Specific Character Recognition**

Obozinski, Taskar, and Jordan, 2006

• Each task is a classification between two letters for one writer.

|      | pixels: error (%) |                 |                      |      |  |  |  |  |
|------|-------------------|-----------------|----------------------|------|--|--|--|--|
| Task | $\ell_1/\ell_2$   | $\ell_1/\ell_1$ | $\mathrm{id}.\ell_1$ | pool |  |  |  |  |
| c/e  | 4.0               | 8.5             | 9.0                  | 4.5  |  |  |  |  |
| g/y  | 11.4              | 16.1            | 17.2                 | 18.6 |  |  |  |  |
| g/s  | 4.4               | 10.0            | 10.3                 | 6.9  |  |  |  |  |
| m/n  | 2.5               | 6.3             | 6.9                  | 4.1  |  |  |  |  |
| a/g  | 1.3               | 3.6             | 4.1                  | 3.6  |  |  |  |  |
| i/j  | 12.0              | 14.0            | 14.0                 | 11.3 |  |  |  |  |
| a/o  | 2.8               | 4.8             | 5.2                  | 4.2  |  |  |  |  |
| f/t  | 5.0               | 6.7             | 6.1                  | 8.2  |  |  |  |  |
| h/n  | 3.2               | 14.3            | 18.6                 | 5.0  |  |  |  |  |

#### **Dirty Model for Multi-Task Learning**

Jalali et. al. 2010 NIPS

• In practical applications, it is too restrictive to constrain all tasks to share a single shared structure.





## **Robust Multi-Task Learning**

Most Existing MTL Approaches
Robust MTL Approaches





#### **Robust Multi-Task Feature Learning**

Gong et. al. 2012 Submitted

• Simultaneously captures a common set of features among relevant tasks and identifies outlier tasks.



The Twelfth SIAM Information Conference on Data Mining, April 27, 2012



## **Regularization-based Multi-Task Learning**

- All tasks are related
  - Mean-Regularized MTL
  - MTL in high dimensional feature space
    - Embedded Feature Selection
    - Low-Rank Subspace Learning
- Clustered MTL
- MTL with Tree/Graph structure



### **Trace-Norm Regularized MTL**

Capture task relatedness via a shared low-rank structure





• Assume we have a rank 2 model matrix:



The Twelfth SIAM Information Conference on Data Mining, April 27, 2012







Ji et. al. 2009 ICML

- Rank minimization formulation
  - $-\min_{W} \text{Loss}(W) + \lambda \times \text{Rank}(W)$
  - Rank minimization is NP-Hard for general loss functions
- Convex relaxation: trace norm minimization
  - $\min_{W} \text{Loss}(W) + \lambda \times ||W||_{*}$   $||W||_{*}$ : sum of singular values of W
  - The trace norm is theoretically shown to be a good approximation for rank function (Fazel et al., 2001).



- Evaluation on the *School* data:
  - Predict exam scores for 15362 students from 139 schools
  - Describe each student by 27 attributes
  - Compare Ridge Regression, Lasso, and Trace Norm (for inducing a low-rank structure)




## **Alternating Structure Optimization (ASO)**

Ando and Zhang, 2005 JMRL

• ASO assumes that the model is the sum of two components: a task specific one and a shared low dimensional subspace.





## **Alternating Structure Optimization (ASO)**



• Empirical loss function for i-th task

$$\mathcal{L}_{i}(X_{i}(\Theta v_{i} + w_{i}), y_{i}) = ||X_{i}(\Theta v_{i} + w_{i}) - y_{i}||^{2}$$

• ASO simultaneously learns *models* and the *shared structure*:

$$\begin{split} & \min_{\boldsymbol{\theta}, \{v_i, w_i\}} \sum_{i=1}^m \{ \mathcal{L}_i(X_i(\boldsymbol{\theta} v_i + w_i), y_i) + \alpha \| w_i \|^2 \} \\ \text{subject to} & \boldsymbol{\theta}^T \boldsymbol{\theta} = \mathbf{I} \end{split}$$



### **iASO** Formulation

Chen et al., 2009 ICML

 $\circ$  iASO formulation

$$\min_{\substack{\boldsymbol{\theta}, \{v_i, w_i\}\\ \boldsymbol{\theta} \in \mathbf{I}}} \sum_{i=1}^{m} \{ \mathcal{L}_i(X_i(\boldsymbol{\theta} v_i + w_i), y_i) + \alpha \| \boldsymbol{\theta} v_i + w_i \|^2 + \beta \| w_i \|^2 \}$$
subject to 
$$\begin{array}{l} \prod_{i=1}^{m} \{\mathcal{L}_i(X_i(\boldsymbol{\theta} v_i + w_i), y_i) + \alpha \| \boldsymbol{\theta} v_i + w_i \|^2 + \beta \| w_i \|^2 \} \\ = 1 \end{array}$$

- control both *model complexity* and task relatedness
- subsume ASO (Ando et al.'05) as a special case
- naturally lead to a convex relaxation (Chen et al., 09, ICML)
- Convex relaxed ASO is equivalent to iASO under certain mild conditions



Capture task relatedness

### **Incoherent Low-Rank and Sparse Structures**

Chen *et. al.* 2010 KDD

• ASO uses L2-norm on task-specific component, we can also use L1-norm to learn task-specific features.

Task-specific features



W





## **Robust Low-Rank in MTL**

Chen et. al. 2011 KDD

• Simultaneously perform low-rank MTL and identify outlier tasks.





al al sub-training an

### Summary

- All multi-task learning formulations discussed above can fit into the **W=P+Q** schema.
  - Component P: shared structure
  - Component Q: information not captured by the shared structure

| Embedded Feature<br>Selection | Shared Structure P             | Component Q                      |
|-------------------------------|--------------------------------|----------------------------------|
| L1/Lq                         | Feature Selection (L1/Lq Norm) | 0                                |
| Dirty                         | Feature Selection (L1/Lq Norm) | L1-norm                          |
| rMTFL                         | Feature Selection (L1/Lq Norm) | Outlier (column-wise L1/Lq Norm) |
| Low-Rank Subspace<br>Learning |                                |                                  |
| Trace Norm                    | Low-Rank (Trace Norm)          | 0                                |
| ISLR                          | Low-Rank (Trace Norm)          | L1-norm                          |
| ASO                           | Low-Rank (Shared Subspace)     | L2-norm on independent comp.     |
| RMTL                          | Low-Rank (Trace Norm)          | Outlier (column-wise L1/Lq Norm) |
|                               |                                |                                  |



## **Regularization-based Multi-Task Learning**

- All tasks are related
  - Mean-Regularized MTL
  - MTL in high dimensional feature space
    - Embedded Feature Selection
    - Low-Rank Subspace Learning
- Clustered MTL
- MTL with Tree/Graph structure



# Multi-Task Learning with Clustered Structures

- Most MTL techniques assume all tasks are related
- Not true in many applications
- Clustered multi-task learning assumes
  - the tasks have a group structure
  - the models of tasks from the same group are closer to each other than those from a different group



e.g. tasks in the yellow group are predictions of heart related diseases and in the blue group are brain related diseases.



### **Clustered Multi-Task Learning**

Jacob et. al. 2008 NIPS, Zhou et. al. 2011 NIPS

• Use regularization to capture clustered structures.



## **Clustered Multi-Task Learning**

Zhou et. al. 2011 NIPS

 Capture structures by minimizing sumof-square error (SSE) in K-means clustering:

$$\min_{I} \sum_{j=1}^{k} \sum_{v \in I_{j}} \left\| w_{v} - \overline{w}_{j} \right\|_{2}^{2}$$

$$I_{j} \text{ index set of } j^{\text{th}} \text{ cluster}$$

$$\min_{F} \operatorname{tr}(W^{T}W) - \operatorname{tr}(F^{T}W^{T}WF)$$

 $F: m \times k$  orthogonal cluster indicator matrix  $F_{i,j} = 1/\sqrt{n_j}$  if  $i \in I_j$  and 0 otherwise



task number m > cluster number k



## **Clustered Multi-Task Learning**

Zhou et. al. 2011 NIPS

 Directly minimizing SSE is hard because of the non-linear constraint on F:

$$\min_F \operatorname{tr}(W^T W) - \operatorname{tr}(F^T W^T W F)$$

 $F: m \times k$  orthogonal cluster indicator matrix  $F_{i,j} = 1/\sqrt{n_j}$  if  $i \in I_j$  and 0 otherwise

$$\min_{F:F^T F=I_k} \operatorname{tr}(W^T W) - \operatorname{tr}(F^T W^T W F)$$

Zha et. al. 2001 NIPS



task number m > cluster number k



Cluster k-1

## **Clustered Multi-Task Learning**

Zhou et. al. 2011 NIPS

• Clustered multi-task learning (CMTL) formulation

$$\min_{W,F:F^{T}F=I_{k}} \text{Loss}(W) + \alpha[\text{tr}(W^{T}W) - \text{tr}(F^{T}W^{T}WF)] + \beta \text{tr}(W^{T}W)$$

$$\text{capture cluster structures}$$

$$\lim_{Cluster 1} Cluster 2$$

- CMTL has been shown to be equivalent to ASO
  - Given the dimension of the shared low-rank subspace in ASO and the cluster number in clustered multi-task learning (CMTL) are the same.



### **Convex Clustered Multi-Task Learning**

Zhou et. al. 2011 NIPS





## **Regularization-based Multi-Task Learning**

- All tasks are related
  - Mean-Regularized MTL
  - MTL in high dimensional feature space
    - Embedded Feature Selection
    - Low-Rank Subspace Learning
- Clustered MTL
- MTL with Tree/Graph structure



- In some applications, the tasks may be equipped with a tree structure:
  - The tasks belonging to the same node are similar to each other
  - The similarity between two nodes is related to the depth of the 'common' tree node





Kim and Xing 2010 ICML

• Tree-Guided Group Lasso





- In real applications, tasks involved in MTL may have graph structures
  - The two tasks are related if they are connected in a graph, i.e. the connected tasks are similar
  - The similarity of two related tasks can be represented by the weight of the connecting edge.





- A simple way to encode graph structure is to penalize the difference of two tasks that have an edge between them
- Given a set of edges E, we thus penalize:  $\sum_{i=1}^{|E|} \left\| W_{e_{\{i,1\}}} - W_{e_{\{i,2\}}} \right\|_2^2 = \|WR^T\|_F^2 \quad R \in \mathbb{R}^{|E| \times m}$
- The graph regularization term can also be represented in the form of Laplacian term

 $\|WR^{T}\|_{F}^{2} = tr((WR^{T})^{T}WR^{T}) = tr(WR^{T}RW^{T}) = tr(W\mathcal{L}W^{T})$ 



- How to obtain graph information
  - External domain knowledge
    - protein-protein interaction (PPI) for microarray
  - Discover task relatedness from data
    - Pairwise correlation coefficient
    - Sparse inverse covariance (Friedman et. al. 2008 Biostatistics)





Sparse Inverse Covariance Graph (lambda=0.10, #edge = 1620)





Chen et. al. 2011 UAI, Kim et. al. 2009 Bioinformatics

• Graph-guided Fused Lasso





Kim et. al. 2009 Bioinformatics

- In some applications, we know not only which pairs are related, but also **how** they are related.
- Graph-Weighted Fused Lasso.



$$\min_{W} \operatorname{Loss}(W) + \lambda \|W\|_{1} + \gamma \sum_{e=(m,l)\in E} \tau(r_{ml}) \sum_{j=1}^{J} |W_{jm} - sign(r_{ml})W_{jl}|$$

Added weight information!



## **Practical Guideline**

### • MTL versus STL

 MTL is preferred when dealing with multiple related tasks with small number of training samples

### • Shared features versus shared subspace

- Identifying shared features is preferred When the data dimensionality is large
- Identifying a shared subspace is preferred when the number of tasks is large



# **Tutorial Road Map**

- Part I: Multi-task Learning (MTL) background and motivations
- Part II: MTL formulations
- Part III: Case study of real-world applications
  - Incomplete Multi-Source Fusion
  - Drosophila Gene Expression Image Analysis
- Part IV: An MTL Package (MALSAR)
- Current and future directions



# Case Study I: Incomplete Multi-Source Data Fusion

- In many applications, multiple data sources may contain a considerable amount of missing data.
- In ADNI, over half of the subjects lack CSF measurements; an independent half of the subjects do not have FDG-PET.





### **Overview of iMSF**

#### Yuan et. al. 2012 NeuroImage





## **iMSF: Performance**

#### Yuan et. al. 2012 NeuroImage







# Case Study II: *Drosophila* Gene Expression Image Analysis

- *Drosophila* (fruit fly) is a favorite model system for geneticists and developmental biologists studying embryogenesis.
  - The small size and short generation time make it ideal for genetic studies.
- In situ hybridization allows us to generate images showing when and where individual genes were active.
  - The analysis of such images can potentially reveal gene functions and gene-gene interactions.





### **Drosophila** gene expression pattern images





stage 4-6

stage 7-8

# Comparative image analysis

Twist



anterior endoderm AISN trunk mesoderm AISN subset cellular blastoderm mesoderm AISN



dorsal ectoderm AISN procephalic ectoderm AISN subset cellular blastoderm mesoderm AISN

stumps

anterior endoderm AISN trunk mesoderm AISN

head mesoderm AISN



trunk mesoderm PR head mesoderm PR anterior endoderm anlage



trunk mesoderm PR head mesoderm PR



yolk nuclei trunk mesoderm PR head mesoderm PR anterior endoderm anlage

We need the spatial and temporal annotations of expressions

[Tomancak et al. (2002) Genome Biology; Sandmann et al. (2007) Genes & Dev.]



### **Challenges of manual annotation**





### **Method outline**

Ji et. al. 2008 Bioinformatics; Ji et. al. 2009 BMC Bioinformatics; Ji et. al. 2009 NIPS





### Low rank multi-task learning model

Ji et. al. 2009 BMC Bioinformatics



### **Graph-based multi-task learning model**





**Closed-form solution** 



**Center for Evolutionary Medicine and Informatics** 

### **Spatial annotation performance**



- 50% data for training and 50% for testing and 30 random trials are generated
- Multi-task approaches outperform single-task approaches



# **Tutorial Road Map**

- Part I: Multi-task Learning (MTL) background and motivations
- Part II: MTL formulations
- Part III: Case study of real-world applications
  - Incomplete Multi-Source Fusion
  - Drosophila Gene Expression Image Analysis
- Part IV: An MTL Package (MALSAR)
- Current and future directions





MULTI-TASK LEARNING VIA STRUCTURAL REGULARIZATION JIAYU ZHOU, JIANHUI CHEN, JIEPING YE

- A multi-task learning package
- Encode task relationship via structural regularization
- www.public.asu.edu/~jye02/Software/MALSAR/



# **MTL Algorithms in MALSAR 1.0**

- Mean-Regularized Multi-Task Learning
- MTL with Embedded Feature Selection
  - Joint Feature Learning
  - Dirty Multi-Task Learning
  - Robust Multi-Task Feature Learning
- MTL with Low-Rank Subspace Learning
  - Trace Norm Regularized Learning
  - Alternating Structure Optimization
  - Incoherent Sparse and Low Rank Learning
  - Robust Low-Rank Multi-Task Learning
- Clustered Multi-Task Learning
- Graph Regularized Multi-Task Learning



# **Tutorial Road Map**

- Part I: Multi-task Learning (MTL) background and motivations
- Part II: MTL formulations
- Part III: Case study of real-world applications
  - Incomplete Multi-Source Fusion
  - Drosophila Gene Expression Image Analysis
- Part IV: An MTL Package (MALSAR)
- Current and future directions



## **Trends in Multi-Task Learning**

- **Develop efficient algorithms** for large-scale multitask learning.
- Semi-supervised and unsupervised MTL
- Learn task structures automatically in MTL
- Asymmetric MTL
- Cross-Domain MTL
  - The features may be different



The relationship is not mutual



# Acknowledgement

- National Science Foundation
- National Institute of Health



- Abernethy, J., Bach, F., Evgeniou, T., & Vert, J. (2006). Low-rank matrix factorization with attributes. Arxiv preprint cs/0611124.
- Abernethy, J., Bach, F., Evgeniou, T., & Vert, J. (2009). A new approach to collaborative filtering: Operator estimation with spectral regularization. *The Journal of Machine Learning Research*, 10, 803–826.
- Agarwal, A., Daumé III, H., & Gerber, S. (2010). Learning multiple tasks using manifold regularization. .
- Ando, R., & Zhang, T. (2005). A framework for learning predictive structures from multiple tasks and unlabeled data. *The Journal of Machine Learning Research*, 6, 1817– 1853.
- Argyriou, A., Evgeniou, T., & Pontil, M. (2007). Multi-task feature learning. Advances in neural information processing systems, 19, 41.
- Argyriou, A., Evgeniou, T., & Pontil, M. (2008a). Convex multi-task feature learning. Machine Learning, 73, 243–272.



- Argyriou, A., Micchelli, C., Pontil, M., & Ying, Y. (2008b). A spectral regularization framework for multi-task structure learning. Advances in Neural Information Processing Systems, 20, 25–32.
- Bakker, B., & Heskes, T. (2003). Task clustering and gating for bayesian multitask learning. *The Journal of Machine Learning Research*, 4, 83–99.
- Baxter, J. (2000). A model of inductive bias learning. Journal of Artificial Intelligence Research.
- Bickel, S., Bogojeska, J., Lengauer, T., & Scheffer, T. (2008). Multi-task learning for hiv therapy screening. *Proceedings of the 25th international conference on Machine learning* (pp. 56–63).
- Bonilla, E., Chai, K., & Williams, C. (2008). Multi-task gaussian process prediction. Advances in Neural Information Processing Systems, 20, 153–160.

Caruana, R. (1997). Multitask learning. Machine Learning, 28, 41–75.

Chen, J., Liu, J., & Ye, J. (2010). Learning incoherent sparse and low-rank patterns from multiple tasks. Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 1179–1188).



- Chen, J., Tang, L., Liu, J., & Ye, J. (2009). A convex formulation for learning shared structures from multiple tasks. *Proceedings of the 26th Annual International Conference on Machine Learning* (pp. 137–144).
- Evgeniou, T., Micchelli, C., & Pontil, M. (2006). Learning multiple tasks with kernel methods. *Journal of Machine Learning Research*, 6, 615.
- Evgeniou, T., & Pontil, M. (2004). Regularized multi-task learning. Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining (pp. 109–117).
- Gu, Q., Li, Z., & Han, J. (2011). Learning a kernel for multi-task clustering. Twenty-Fifth AAAI Conference on Artificial Intelligence.
- Gu, Q., & Zhou, J. (2009). Learning the shared subspace for multi-task clustering and transductive transfer classification. *Data Mining*, 2009. ICDM'09. Ninth IEEE International Conference on (pp. 159–168).
- Jacob, L., Bach, F., & Vert, J. (2008). Clustered multi-task learning: A convex formulation. Arxiv preprint arXiv:0809.2085.



- Jebara, T. (2004). Multi-task feature and kernel selection for svms. *Proceedings of the twenty-first international conference on Machine learning* (p. 55).
- Ji, S., & Ye, J. (2009). An accelerated gradient method for trace norm minimization. Proceedings of the 26th Annual International Conference on Machine Learning (pp. 457–464).
- Lawrence, N., & Platt, J. (2004). Learning to learn with the informative vector machine. Proceedings of the twenty-first international conference on Machine learning (p. 65).
- Liu, J., Ji, S., & Ye, J. (2009). Multi-task feature learning via efficient 1 2, 1-norm minimization. Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence (pp. 339–348).



- Nie, F., Huang, H., Cai, X., & Ding, C. (2010). Efficient and robust feature selection via joint 121-norms minimization. .
- Obozinski, G., Taskar, B., & Jordan, M. (2010). Joint covariate selection and joint subspace selection for multiple classification problems. *Statistics and Computing*, 20, 231– 252.
- Thrun, S., & OSullivan, J. (1998). Clustering learning tasks and the selective cross-task transfer of knowledge. *Learning to learn*, 181–209.
- Wang, F., Wang, X., & Li, T. (2009). Semi-supervised multi-task learning with task regularizations. 2009 Ninth IEEE International Conference on Data Mining (pp. 562– 568).
- Xue, Y., Liao, X., Carin, L., & Krishnapuram, B. (2007). Multi-task learning for classification with dirichlet process priors. *The Journal of Machine Learning Research*, 8, 35–63.
- Yu, K., Schwaighofer, A., Tresp, V., Ma, W., & Zhang, H. (2003). Collaborative ensemble learning: Combining collaborative and content-based information filtering via hierarchical bayes. *Proceedings of the 19th Conference on Uncertainty in Artificial Intelligence.*



- Yu, K., Tresp, V., & Schwaighofer, A. (2005). Learning gaussian processes from multiple tasks. *Proceedings of the 22nd international conference on Machine learning* (pp. 1012–1019).
- Yu, K., Tresp, V., & Yu, S. (2004). A nonparametric hierarchical bayesian framework for information filtering. *Proceedings of the 27th annual international ACM SIGIR* conference on Research and development in information retrieval (pp. 353–360).
- Zha, H., He, X., Ding, C., Gu, M., & Simon, H. (2002). Spectral relaxation for k-means clustering. Advances in Neural Information Processing Systems, 2, 1057–1064.
- Zhang, J., Ghahramani, Z., & Yang, Y. (2006). Learning multiple related tasks using latent independent component analysis. Advances in neural information processing systems, 18, 1585.
- Zhang, Y., & Yeung, D. (2010). A convex formulation for learning task relationships in multi-task learning. *Proceedings of the 26th Conference on Uncertainty in Artificial Intelligence (UAI)* (pp. 733–742).



Zhou, J., Chen, J., & Ye, J. (2011a). Clustered multi-task learning via alternating structure optimization. Advances in Neural Information Processing Systems.

Zhou, J., Yuan, L., Liu, J., & Ye, J. (2011b). A multi-task learning formulation for predicting disease progression. *Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining* (pp. 814–822). New York, NY, USA: ACM.