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Tutorial Goals

Understand the basic concepts in multi-task learning

Understand different approaches to model task
relatedness

Get familiar with different types of multi-task
earning techniques

ntroduce multi-task learning applications

ntroduce the multi-task learning package: MALSAR
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Tutorial Road Map
e Part |: Multi-task Learning (MTL) background and
motivations
e Partll: MTL formulations

e Part lll: Case study of real-world applications
— Incomplete Multi-Source Fusion
— Drosophila Gene Expression Image Analysis

e Part IV: An MTL Package (MALSAR)
e Current and future directions
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Tutorial Road Map
e Part I: Multi-task Learning (MTL) background and
motivations
e Partll: MTL formulations

e Part lll: Case study of real-world applications
— Incomplete Multi-Source Fusion
— Drosophila Gene Expression Image Analysis

e Part IV: An MTL Package (MALSAR)
e Current and future directions
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Multiple Tasks

o Examination Scores Prediction? (Argyriou et. al.’08)

School 1 - Alverno High School

Student Birth Previous ... School Exam
id year score ranking : score
72981 1985 95 83% ?
\ ] \ ]
|| 1 XX}

©Ron Leishman * www.ClipartOf.com/442096

student-dependent  school-dependent

School 138 - Jefferson Intermediate School

Student  Birth  Previous ... School ... Exam
id year score ranking s score
31256 1986 87 2% ?

\ A J
I 1

student-dependent  school-dependent

School 139 - Rosemead High School

Student  Birth Previous ... School Exam
id year score ranking score
12381 1986 83 77% ?

\ J \ J
I I

student-dependent  school-dependent

The Inner London Education Authority (ILEA)
5
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Learning Multiple Tasks

o Learning each task independently

School 1 - Alverno High School

Student Birth Previous School Exam
id year score ranking Score |:>
—
72981 1985 95 83% ?

School 138 - Jefferson Intermediate School
Student Birth Previous School Exam
<j id year score ranking > | Score

31256 1986 87 72% ?
School 139 - Rosemead High School
Student Birth Previous School Exam
id year score ranking — > | Score |:>
12381 1986 83 77% ?
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Learning Multiple Tasks

o Leaning multiple tasks simultaneously

School 1 - Alverno High School

Student Birth Previous School Exam
id year score ranking Score |:>
—_—>

72981 1985 95 83% e ?

School 138 - Jefferson Intermediate School

Student  Birth Previous School Exam
<j id year score ranking o | Score
31256 1986 87 72% w

School 139 - Rosemead High School

Student Birth Previous School Exam
id year score ranking ——> | Score |:>
12381 1986 83 7% ?

Learn tasks simultaneously |:> ......
Model the tasks relationship
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Performance of MTL

o Evaluation on the School data:

 Predict exam scores for 15362 students from 139 schools
* Describe each student by 27 attributes

 Compare single task learning approaches (Ridge Regression, Lasso) and one multi-task
learning approach (trace-norm regularized learning)

1.05; U L L L L L
4 —<— Ridge Regression
‘ —<— Lasso
1 — % Trace Norm |
0.95
L 0.9
)
=
< 0.85
0.8
0.75 Performance measure:
mean squared error
0.7¢ r r r r r r Y N—MSE = -
1 2 3 4 5 6 e 8 variance (target)
8 Index of Training Ratio
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Multi-Task Learning

e Multi-task Learning is Sl Task earing
different from single task
learning in the training
(induction) process.

e |[nductions of multiple -
tasks are performed |
simultaneously to capture
intrinsic relatedness.
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Learning Methods

o Multi-task Learning
— [Model the task relatedness

multi-task learning

— Learn all tasks simultaneously
—  Tasks may have different data/features
multi-label learning
o Multi-label Learning

— Model the label relatedness

— Learn all labels simultaneously

multi-class learning — Labels share the same data/features
o Multi-class Learning

— Learn the classes independently

— All classes are exclusive
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Web Pages Categorization

Chen et. al. 2009 ICML
e Classify documents into

Classifiers

C a te g O ri e S P Classifiers’ Parameters
Models of different
categories are

e The classification of each i . latently reated
category is a task

. . Q V:Vorld
e The tasks of predicting :
different categories may

be latently related

Home us. World Politics Business Sports Entertainment Health Tech & science Travel Local Weather

Gadhafi vows 'long war’ after US, allies strike — S . Africa World Blog
L~ BEell  Pentagon: 'No i
Joy in rebel stronghold after Western attack : indications of Americas Behind the Wall
o civilian casualties' :
Japan reports progress at leaking nuclear complex : Europe Wonderful World
Mullen: Chance Gadhafi could cling to power e - Mideast & N. Africa Weather
% 2 The Week in ] y
Egypt: Voters OK constitution changes \ M Pictures  Asia-Pacific PhotoBlog

Woman, grandson found under rubble in Japan > 27 - South & Central Asia The Windsor Knot

T dmsnbc.com i . brrge NN

The Twelfth SIAM Information Conference on Data Mining, April 27, 2012




BIODESIGN . o n 0
INSTITUTE Center for Evolutionary Medicine and Informatics

MTL for HIV Therapy Screening

Bickel et. al. ICML 08
e Hundreds of possible combinations of drugs, some of which use
similar biochemical mechanisms

e The samples available for each combination are limited.
e For a patient, the prediction of using one combination is a task
e Use the similarity information by multiple task learning

Drug Patient Treatment Record

ETV

e

AZT ( AZT ) ?
i ° E

e : FTC

DAT

DDI

T —
FTC "
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Other Applications
e Portfolio selection [Ghosn and Bengio, NIPS’97]

e Collaborative ordinal regression [Yu et. al. NIPS'06]
e Web image and video search [Wang et. al. CVPR’09]
e Disease progression modeling [Zhou et. al. KDD’11]

e Disease prediction [Zhang et. al. Neurolmage 12]
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Tutorial Road Map
e Part |: Multi-task Learning (MTL) background and
motivations
e Partll: MTL formulations

e Part lll: Case study of real-world applications
— Incomplete Multi-Source Fusion
— Drosophila Gene Expression Image Analysis

e Part IV: An MTL Package (MALSAR)
e Current and future directions
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How Tasks Are Related

Methods
( * Mean-regularized MTL
\/ \ ° I I
QX ." Joint feature learning

X <Al « Trace-Norm regularized
% MTL

| * Alternating structural
ASXHTaﬁ(Igg:re related 03t|m|zat|0n (ASO)
 Shared Parameter
Gaussian Process
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How Tasks Are Related

* Assume all tasks are
Q related may be too
strong for practical
Q applications.
* There are some
irrelevant (outlier)
tasks.

Assumption:
There are outlier tasks
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qu Tasks Are Related

///// Methods

e Clustered MTL
* Tree MTL

e Network MTL

\Ké’;ﬁmption:
Tasks have group structures

®

Assumption:
Tasks have tree structures

1]
L)
L)
L)
L)
1)
L)
L)
L)
.
L)

[

[ |

[}

(]

’ [

’ '

! ]
[

I
)

4 '

Assumption: 4

: . . \\‘\ ‘ ' ‘
Tasks have graph/network structures @ @ @ @ Q @ @ @ Q @

Models‘
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Multi-Task Learning Methods

e Regularization-based MTL

— All tasks are related
e regularized MTL, joint feature learning, low rank MTL, ASO

— Learning with outlier tasks: robust MTL

— Tasks form groups/graphs/trees
e clustered MTL, network MTL, tree MTL

e Other Methods
— Shared Hidden Nodes in Neural Network
— Shared Parameter Gaussian Process
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Regularization-based Multi-Task Learning

e All tasks are related
— Mean-Regularized MTL
— MTL in high dimensional feature space

e Embedded Feature Selection
e Low-Rank Subspace Learning

e Clustered MTL
e MTL with Tree/Graph structure
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INSTITUTE

Notation

Dimension d Task m
A
Task m Task m
o N
(< <
Q Q
S Q S
IS & 3
o (@] )
vy D) ) S
- o Learning > 2
< < %
Q L o
Q Q
& &
S S
(%1 D)
L/
Feature Matrices X; Target Vectors Y; Model Matrix W

e We focus on linear models: Y; = X; X W;
X; € RW*4 )y, € RM*Y W = [Wy, W, ..., W,,,]
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Mean-Regularized Multi-Task Learning

Evgeniou & Pontil, 2004 KDD

e Assumption: task parameter vectors of all tasks are
close to each other.

— Advantage: simple, intuitive, easy to implement

— Disadvantage: may not hold in real applications.

Regularization
penalizes the deviation of each task
from the mean

m
1
W, == W,
m

s=1

1 m

— _vII2
rr‘%lfnzllXW YI|F+/1E1
i=
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Regularization-based Multi-Task Learning

e All tasks are related
— Mean-Regularized MTL
— MTL in high dimensional feature space

e Embedded Feature Selection
e Low-Rank Subspace Learning

e Clustered MTL
e MTL with Tree/Graph structure
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Multi-Task Learning with High Dimensional Data

e |n practical applications, we may deal with high
dimensional data.

— Gene expression data, biomedical image data

e Curse of Dimensionality

e Dealing with high dimensional data in multi-task
learning
— Embedded feature selection: L,/L, - Group Lasso

— Low-rank subspace learning: low-rank assumption — ASO,
Trace-norm regularization
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Regularization-based Multi-Task Learning

e All tasks are related
— Mean-Regularized MTL

— MTL in high dimensional feature space
e Embedded Feature Selection
e Low-Rank Subspace Learning

e Clustered MTL
e MTL with Tree/Graph structure
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Multi-Task Learning with Joint Feature
Learning

e One way to capture the task BRI S
relatedness from multiple Feature 1
related tasks is to constrain Feature 2
all models to share a common ™’
set of features.

e For example, in school data,  Fetures
the scores from different Feature?
schools may be determined
by a similar set of features.

Feature 9
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Multi-Task Learning with Joint Feature Learning

Obozinski et. al. 2009 Stat Comput, Liu et. al. 2010 Technical Report

* Using group sparsity: ¢4 /€ ,-norm regularization

e When g>1 we have group sparsity. IWlyq = ZIIWzIIq

Sample 1 7 ] 7
o x L L o000 L
. L L _—
.
»‘&YA ,‘as‘* ,@s\‘ ,@s\& »@5“:" «'A‘*% —\a‘*‘o
Output Input Model
nxm nxd dxm

1
. 2
m&nf ”XW - Y”F + Allwlll,q
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Writer-Specific Character Recognition

Obozinski, Taskar, and Jordan, 2006

e Each task is a classification between two letters for

5SS 5
s {C5a5g

pixels: error (%)
Task £1/€o €4/¢7 id.fy pool
cle 4.0 8.5 9.0 4.5
a/y 11.4 16.1 17.2 18.6
g/s 4.4 10.0 10.3 6.9
m/n | 2.5 6.3 6.9 4.1
a/g 1.3 3.6 4.1 3.6
i/ 12.0 14.0 14.0 11.3
ajo 2.8 4.8 5.2 4.2
f/t 5.0 6.7 6.1 8.2
h/n 3.2 14.3 18.6 5.0
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Dirty Model for Multi-Task Learning

Jalali et. al. 2010 NIPS
e |n practical applications, it is too restrictive to
constrain all tasks to share a single shared structure.

= +
Model Group Sparse Sparse
W Component Component
P Q

rlgliinlY —X(P + QI + 41lIPll1q + 2211Ql4
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Robust Multi-Task Learning

o Most Existing MTL Approaches o Robust MTL Approaches

all tasks are relevant

\q \“ irrelevak

relevant tasks

/>

V “' ‘

Assumption:
All tasks are related

Assumption:
There are outlier tasks
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Robust Multi-Task Feature Learning

Gong et. al. 2012 Submitted
e Simultaneously captures a common set of features
among relevant tasks and identifies outlier tasks.

Joint Selected
Features
= . +

Outlier Tasks

Model Group Sparse Group Sparse
W Component Component
P Q

" rllgiQnIIY —X(P + QI + AlIPllyq + 2211Q" Il 14
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Regularization-based Multi-Task Learning

e All tasks are related
— Mean-Regularized MTL
— MTL in high dimensional feature space

e Embedded Feature Selection
e Low-Rank Subspace Learning

e Clustered MTL
e MTL with Tree/Graph structure
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Trace-Norm Regularized MTL

o Capture task relatedness via a shared low-rank structure

task 1 |:> |:> trained |:> [ generalization]
data model
task 2 |:> |:> trained |:> [ generalization]
data model
[ J
[ J

task n |:> |:> trained |:> [generalization]
data model

[ A shared low-rank subspace ]
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Low-Rank Structure for MTL

e Assume we have a rank 2 model matrix:

training data weight vector  target basis vector  basis vector

(O — | ) i N
Task 1 ] |
: X = :: = al + aZ
] | ‘
- : Ry i u
i ) iy B -
Task 2 S
% N = B + B
N - ||
' A
e g R E m —
Task 3 X = [ S P
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Low-Rank Structure for MTL

a;  axi’
X B1 B
Y1 V2
Basis vectors Coefficients
T11 T1m
. X
T T opm
L ) L )
! Y m > p
m tasks p basis vectors
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Low-Rank Structure for MTL

Jiet. al. 2009 ICML

e Rank minimization formulation
~ mmi/n Loss(W) + A X Rank(W)

— Rank minimization is NP-Hard for general loss functions

e Convex relaxation: trace norm minimization

— mmi/n Loss(W) + A X ||W]l, W]l : sum of singular values of W

— The trace norm is theoretically shown to be a good
approximation for rank function (Fazel et al., 2001).

The Twelfth SIAM Information Conference on Data Mining, April 27, 2012
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Low-Rank Structure for MTL

o Evaluation on the School data:
* Predict exam scores for 15362 students from 139 schools

* Describe each student by 27 attributes
 Compare Ridge Regression, Lasso, and Trace Norm (for inducing a low-rank structure)

1.05 T T T T T T
‘ —©— Ridge Regression
3 o Lasso Performance measure:
1k —=— Trace Norm i

mean squared error

N-MSE =

0.95 variance (target)

0.9
The Low-Rank Structure

(induced via Trace Norm)
leads to the smallest N-MSE.

N-MSE

0.85

0.8

0.75

0.7

Index of Training Ratio
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Alternating Structure Optimization (ASO)

Ando and Zhang, 2005 JMRL
* ASO assumes that the model is the sum of two components: a
task specific one and a shared low dimensional subspace.

\
Task 1 Input X |w, vi| o
\‘\,.. J R
<\\
Task 2 Input X |w, V2| ; (0]
\ || i
: % Low- %
- ° / Dimensional |
' Feature Map!
— B | |
Task m Input X |w, V| A
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Alternating Structure Optimization (ASO)

Ando and Zhang, 2005 JMRL
o Learning from the i-th task | _g, 4 .

Xi

Input

Low-
Dimensional
Feature Map

o Empirical loss function for i-th task
Li(Xi(0v; + wy),yi) = IXi(Bv; + wy) —y; I?

o ASO simultaneously learns models and the shared structure:

38

subject to

m
e,{gii,xr/lvi}z:{ﬁi(xi(evi +wj),yi) + allw;ll*}
i=1

0Te =1
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IASO Formulation

Chen et al., 2009 ICML

o IASO formulation

m
e,fgii,vnvi}z{Li(Xi(eVi +wy), yi) + allev; + w;ll? + B [lw;ll?}

i=1
subject to eTe =1

* control both model complexity and task relatedness
e subsume ASO (Ando et al’05) as a special case
* naturally lead to a convex relaxation (Chen et al., 09, ICML)

* Convex relaxed ASO is equivalent to iASO under certain
mild conditions

The Twelfth SIAM Information Conference on Data Mining, April 27, 2012
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Incoherent Low-Rank and Sparse Structures

Chen et. al. 2010 KDD

e ASO uses L2-norm on task-specific component, we

can also use L1-norm to learn task-specific features.
Task-specific features Capture task relatedness

77777777777777777777777777777777777777777777777777777777777777777777777777777777777

I
+
I

l % = basis X coefficient

Element-wise Sparse Low-Rank
Model

W Component Component
m Q P
rggl Z Li( X;(P, + Qp,yi) + Allall,
=1 Convex formulation
40 subjectto  [|P|[, <7n
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Robust Low-Rank in MTL

Chen et. al. 2011 KDD
e Simultaneously perform low-rank MTL and identify
outlier tasks.

Identify irrelevant task Capture task relatedness

************************************************************************************

basis X coefficient

+
I

—— oOutlier ]

_—

Model o Tasks Component
wW Q P
m
miniz LiXi(P; + Q) + allPll. + B[1Q7],
41 P,Q =1 5
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Summary

e All multi-task learning formulations discussed above
can fit into the W=P+Q schema.
— Component P: shared structure
— Component Q: information not captured by the shared

structure
Embedded Feature
Selection Shared Structure P Component Q
L1/Lq Feature Selection (L1/Lqg Norm) O
Dirty Feature Selection (L1/Lg Norm) L1-norm
rMTFL Feature Selection (L1/Lg Norm) Outlier (column-wise L1/Lg Norm)
Low-Rank Subspace
Learning
Trace Norm Low-Rank (Trace Norm) 0
ISLR Low-Rank (Trace Norm) L1-norm
ASO Low-Rank (Shared Subspace) L2-norm on independent comp.
RMTL Low-Rank (Trace Norm) Outlier (column-wise L1/Lg Norm)
42
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Regularization-based Multi-Task Learning

e All tasks are related
— Mean-Regularized MTL
— MTL in high dimensional feature space

e Embedded Feature Selection
e Low-Rank Subspace Learning

e Clustered MTL
e MTL with Tree/Graph structure
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Multi-Task Learning with Clustered
Structures

* Most MTL techniques assume
all tasks are related

* Not true in many applications

e Clustered multi-task learning

assumes
% the tasks have a group A hove group structures
structure
** the models of tasks from the e.g. tasks in the yellow group are
same group are closer to each ~ Predictions of heart related
diseases and in the blue group are
other than those from a brain related diseases.

different group

The Twelfth SIAM Information Conference on Data Mining, April 27, 2012
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Clustered Multi-Task Learning

Jacob et. al. 2008 NIPS, Zhou et. al. 2011 NIPS

e Use regularization to capture clustered structures.

— N Clustered Models |

% Training Data X { 1 | oo e :
. R _Y_ W : J — |

7777777777777777777 e 3 Cluster 1 Cluster 2 Cluster k-1 Clusterk |

} - \'} i ........ .Cluster 2 i
* 7 e (@)
| Training Data X ~ i i O O O O ' 3
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Clustered Multi-Task Learning

Zhou et. al. 2011 NIPS
e (Capture structures by minimizing sum-
of-square error (SSE) in K-means

clustering:
K
: 2
min > " [|lw, — ]|
—~—

j=1 UEI]' N v J\ J
Cluster 1 Cluster 2 Cluster k-1 Cluster k

I index set I I Y T T

= CIustg_r_l ______ O Lemeos .
Equivalent o0 0 (&
B " | 1 1% O T ‘

- .~

L S
Y O O; ; CD‘ Cluster k-1
. . N [}

AN 4 ' '
--------- R\ .+" Cluster k

Seanen

m tasks

min tr(W'W) — tr(FTWTWF)

F task number m > cluster number k

F : m Xk orthogonal cluster indicator matrix
F;; =1/ /n;ifi € I; and 0 otherwise
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Clustered Multi-Task Learning

e Directly minimizing SSE is hard

Zhou et. al. 2011 NIPS

m tasks
. AL
because of the non-linear —————
constraint on F:
min tr(WIw) —tr(FTWITWFE)
F : m Xk orthogonal cluster indicator matrix ) Cluster 1 ’ \ClusterZ ’ Cluster k-1 Cluster k
Fyj=1/,/n;if i € ]; and 0 otherwise Chstred Model gz
CIustg[,l - ‘; .......
y OO &

Spe

ct

ral Relaxation ‘0 @ 2 Q)
- . e e v O O O Cluster k-1

. S ;
e QD
-------- R ~ Cluster k

~. .

mln tr(WTW) — tr(FTWTWF) task number m > cluster number k

F:FTF=],

Zha et. al. 2001 NIPS
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Clustered Multi-Task Learning

Zhou et. al. 2011 NIPS

e Clustered multi-task learning (CMTL) formulation

min Loss(W) + a[tr(W'W) — tr(F*WTWF)] + B tr(W™W)
W,F:FTF=I,

capture cluster structures Improves
: generalization
i \Clusterz
O performance
R (CX R

.......

e CMTL has been shown to be equivalent to ASO

— Given the dimension of the shared low-rank subspace in
ASO and the cluster number in clustered multi-task
learning (CMTL) are the same.
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Convex Clustered Multi-Task Learning

Zhou et. al. 2011 NIPS

Ground Truth Mean Regularized MTL o
noise introduced
. e 8 1 .

i by relaxations
W:rank can also

vellcapture

er structure

Trace Norm Regularized Convex Relaxed CMTL
MTL
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Regularization-based Multi-Task Learning

e All tasks are related
— Mean-Regularized MTL
— MTL in high dimensional feature space

e Embedded Feature Selection
e Low-Rank Subspace Learning

e Clustered MTL
e MTL with Tree/Graph structure
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Multi-Task Learning with Tree Structures

e |[n some applications,
the tasks may be
equipped with atree  "EReier e uctres
structure:

— The tasks belonging to
the same node are
similar to each other

— The similarity between

two nodes is related to @@@@Q@@QQQ

the depth of the Models

Task a is more similar with b,
‘common’ tree node compared to c
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Multi-Task Learning with Tree Structures

Kim and Xing 2010 ICML

e Tree-Guided Group Lasso

d
mmi/n Loss(W) + /12 2 Wv”WGJvHZ

j=1vev

Structure

W: W, W;
(Gv5={W » Wy, W3D
0
§ V4
o (Gv4={W u WzD
Ll
5
3
-
Output (Tasks)
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Multi-Task Learning with Graph Structures

e |n real applications, tasks
involved in MTL may have
graph structures B

— The two tasks are related if they
are connected in a graph, i.e. the
connected tasks are similar

— The similarity of two related
taSkS can be representEd by the As?:sT(EE:\% graph/network structures
weight of the connecting edge.

The Twelfth SIAM Information Conference on Data Mining, April 27, 2012



BIODESIGN . o n 0
INSTITUTE Center for Evolutionary Medicine and Informatics

Multi-Task Learning with Graph Structures

e Asimple way to encode graph structure is to
penalize the difference of two tasks that have an
edge between them

e Given a set of edges E, we thus penalize:
|E|

z ‘ Weiny = Weyiz)
=1

e The graph regularization term can also be
represented in the form of Laplacian term

2

= [IWR"|I§ R € RIF>™
2

IWRT||Z2 = tr(WRT)'TWR") = tr(WRTRWT) = tr(WLWT)
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Multi-Task Learning with Graph Structures

e How to obtain graph information

— External domain knowledge
e protein-protein interaction (PPI) for microarray

— Discover task relatedness from data
e Pairwise correlation coefficient
e Sparse inverse covariance (Friedman et. al. 2008 Biostatistics)

Pairwise Correlation for School Data Correlation Graph with Threshold 0.85 (#edge = 1364) Sparse Inverse Covariance Graph (lambda=0.10, #edge = 1620)

r. 0 L R o R A ':."' .-_.i_r'.-:_';-_:": ....r:.._.lh:.- - .:_".:‘:"'!.". 'I-;.'::.:
" .-#-".Il: ‘l llll'h-. "J;-i ?j: b < ll. i -I.l.-‘--..':l: -l.'.':"_i_ '-|I-i-rl.‘ i Irg- .'.;'ﬂ.'\. “5‘ = :I'F.'-;{I%".i
ASVTA L i ens B L L E R AT S R Sy e R
IR A R L S S e R L T e T
e s I gt =t 0 e T B i L
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Multi-Task Learning with Graph Structures

Chen et. al. 2011 UAI, Kim et. al. 2009 Bioinformatics

e Graph-guided Fused Lasso
i S ACGTTTTACTGTACAATTTAC

TIXAT -

Output  phenotype O O O O

e % ACGTTTTACTGTACAATTTAC

J)& } Graph-Guided
Fused Lasso
Output phenotype %

min Loss(W) + AW ||, @ Graph-guided Fusion Penalty

QW =y D) Wi — signCm)Wi]
56 e=(m,l)EE j=1
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Multi-Task Learning with Graph Structures

Kim et. al. 2009 Bioinformatics

e |n some applications, we know not only which pairs
are related, but also how they are related.

e Graph-Weighted Fused Lasso.
input P ACGTTTTACTGTACAATTTAC

J Graph-Weighted
Fused Lasso

Output phenotype

J
mwi/n Loss(W) + A[|W ]|l + ¥ Z Z|W]m — Sign(rml)m/jll
j=1

e=(m,)€EE

Added weight information!
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Practical Guideline

e MTL versus STL

— MTL is preferred when dealing with multiple related tasks
with small number of training samples

e Shared features versus shared subspace

— ldentifying shared features is preferred When the data
dimensionality is large

— ldentifying a shared subspace is preferred when the
number of tasks is large
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Tutorial Road Map
e Part |: Multi-task Learning (MTL) background and
motivations
e Partll: MTL formulations

e Part lll: Case study of real-world applications
— Incomplete Multi-Source Fusion
— Drosophila Gene Expression Image Analysis

e Part IV: An MTL Package (MALSAR)
e Current and future directions
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Case Study I: Incomplete Multi-Source
Data Fusion

Yuan et. al. 2012 Neurolmage

e |[n many applications, e MRI S

multiple data sources reocccliiiigiaen
may contain a
considerable amount of

<
7

‘00000000

o0000000

20000000

20000000
missing data. 00000000 40600
s suect i 00000000 66000

* In ADNI, over half of the : : :

_ subect | 0000000006600
subjects lack CSF e 00000000 |
Subjecy | 00000000 |
measurements; an U 8 ~ N /

independent half of the
subjects do not have
FDG-PET.
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Overview of iMSF

Yuan et. al. 2012 Neurolmage

MRI CSF
\( {.m—-\‘
Task | |
Frrerrrorrronroreed Model |
- Model Il
| Model 11l
E— : i Model IV
Task Il ‘

.
'=$$$$$$$$$$$$$$$$$$

Task IV
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ARIZONA STATE UNIVERSITY

iIMSF: Performance

Yuan et. al. 2012 Neurolmage

0.84
0.83
m iMSF
o
© 0.82 H Zero
5
mEM
O 0.1
< m KNN
0.8 - = SVD
0.79 - e
50.0% 66.7% 75.0%
0.5 1
0.45 0.9
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> 0.35 m iMSF > 0.7 m iMSF
S 03 ® Zero 'C 06 ® Zero
2 025 = 05
7 = EM o mEM
5 0.2 g_ 0.4
v 015 = KNN v 03 ® KNN
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Case Study ll: Drosophila Gene Expression
Image Analysis

e Drosophila (fruit fly) is a favorite model system for geneticists and
developmental biologists studying embryogenesis.

— The small size and short generation time make it ideal for genetic studies.

e [nsitu hybridization allows us to generate images showing when and where
individual genes were active.

— The analysis of such images can potentially reveal gene functions and
gene-gene interactions.

Py P o @ e ©
gl s s Ve
e e
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Drosophila gene expression pattern images

. . LY )

Var, Vi
~ LEXT T X
en i1 d - A - ) V
/,f. Fivins Fivins ST T
Stage 4-6 Stage 7-8 Stage 9-10 Stage 11-12 Stage 13-

Berkeley Drosophila Genome Project (BDGP)
http://www.fruitfly.org/

Stage 1-3 Stage 4-5 Stage 6-7 Stage 8-9 Stage 10-

Fly-FISH
http://fly-fish.ccbr.utoronto.ca/
[Tomancak et al. (2002) Genome Biology; Lécuyer et al. (2007) Cell]
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Comparative image analysis

Twist heartless stumps

—
stage 4-6
.
anterior endoderm AISN dorsal ectoderm AISN anterior endoderm AISN
trunk mesoderm AISN procephalic ectoderm AISN trunk mesoderm AISN
subset subset head mesoderm AISN
cellular blastoderm cellular blastoderm
mesoderm AISN mesoderm AISN
stage 7-8 “ s"
trunk mesoderm PR trunk mesoderm PR yolk nuclei
head mesoderm PR head mesoderm PR trunk mesoderm PR

anterior endoderm anlage

head mesoderm PR
anterior endoderm anlage

We need the spatial and temporal annotations of expressions

[Tomancak et al. (2002) Genome Biology; Sandmann et al. (2007) Genes & Dev.]
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Challenges of manual annotation
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Method outline

Ji et. al. 2008 Bioinformatics; Ji et. al. 2009 BMC Bioinformatics; Ji et. al. 2009 NIPS

Feature extraction Model construction

k Low-rank

multi-task
Images Sparse coding

Graph-based
multi-task
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Low rank multi-task learning model

Ji et. al. 2009 BMC Bioinformatics

W

N

Low rank
L(W . ,in)HlH\N *|</

trace norm = sum of singular values

Loss term
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Graph-based multi-task learning model

Ji et. al. 2009 SIGKDD

sensory system
head

embryonic antennal
sense organ

ventral sensory
complex

dorsal/lateral
sensory complexes

0.50

0.60

embryonic maxillary
sensory complex

sensory nervous
system

loss 2-norm
k n

S %, Y) AW+ 2, Ta(Cole [w, —san(C o)W, |

i=1 j=1 (p.a)e

Closed-form solution
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Spatial annotation performance

W SC+LR

m SC+Graph
m BoW+Graph
® Kernel+SVM

AUC

Stages 4-6 Stages 7-8 Stages 9-10  Stages 11-12  Stages 13-16

e 50% data for training and 50% for testing and 30 random trials are generated
e Multi-task approaches outperform single-task approaches
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Tutorial Road Map
e Part |: Multi-task Learning (MTL) background and
motivations
e Partll: MTL formulations

e Part lll: Case study of real-world applications
— Incomplete Multi-Source Fusion
— Drosophila Gene Expression Image Analysis

e Part IV: An MTL Package (MALSAR)
e Current and future directions
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MULTI-TASK LEARNING VIA STRUCTURAL REGULARIZATION
JIAYU ZHOU, JIANHUI CHEN, JIEPING YE

e A multi-task learning package
e Encode task relationship via structural regularization
e www.public.asu.edu/~jye02/Software/MALSAR/

The Twelfth SIAM Information Conference on Data Mining, April 27, 2012


http://www.public.asu.edu/~jye02/Software/MALSAR/

BIODESIGN . o n 0
INSTITUTE Center for Evolutionary Medicine and Informatics

MTL Algorithms in MALSAR 1.0

e Mean-Regularized Multi-Task Learning

e MTL with Embedded Feature Selection

— Joint Feature Learning
— Dirty Multi-Task Learning
— Robust Multi-Task Feature Learning

e MTL with Low-Rank Subspace Learning
— Trace Norm Regularized Learning
— Alternating Structure Optimization
— Incoherent Sparse and Low Rank Learning
— Robust Low-Rank Multi-Task Learning

e Clustered Multi-Task Learning
e Graph Regularized Multi-Task Learning
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Tutorial Road Map
e Part |: Multi-task Learning (MTL) background and
motivations
e Partll: MTL formulations

e Part lll: Case study of real-world applications
— Incomplete Multi-Source Fusion
— Drosophila Gene Expression Image Analysis

e Part IV: An MTL Package (MALSAR)
e Current and future directions
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Trends in Multi-Task Learning
Develop efficient algorithms for large-scale multi-
task learning.

Semi-supervised and unsupervised MTL

Learn task structures automatically in MTL

Asymmetric MTL

Cross-Domain MTL @

— The features may be different The relationship is not mutual
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